

IDENTIFY HAZARDOUS EVENTS, AND ASSESS EXISTING CONTROL MEASURES AND EXPOSURE RISKS

SSP Manual Pages 37 to 61

SSP Modules

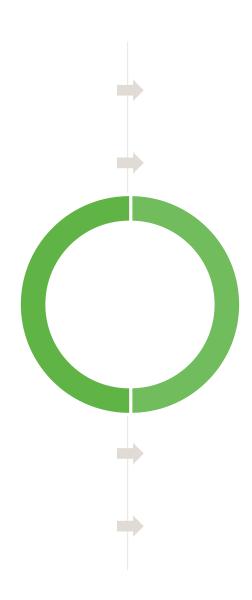
MODULE 3

Identify hazardous events, and assess existing control measures and exposure risks

Module 3 answers the question:

"How significant are the risks?"

Ensures that the following efforts and investments in improvements respond to highest health risks <u>first</u>.


Module 3 helps us understand how well the hazardous events are already controlled in the system.

MODULE 3

Overview

STEPS

- 3.1 Identify hazards and hazardous events.
- 3.2 Identify and assess existing control measures.
- 3.3 Assess and prioritize the exposure risk.

OUTPUTS

- A risk assessment table
- A prioritized list of hazardous events.

MODULE 3

Identify hazardous events, and assess existing control measures and exposure risks

Output 1: Risk assessment table

							RIS	K ASSE	SSMENT				
COMPONENT	HAZ	EXISTING CONTROLS			lihood; S high; M :	ent condi = severity; = medium; v high)	R = risk	climate cha + means i – means d	e most likely nge scenarios ncreased risk, ecreased risk, he same risk)	COMMENTS JUSTIFYING RISK ASSESSMENT (Under current conditions, climate change scenarios, or effectiveness of the control)			
Sanitation step	Hazardous event	Hazard	Exposure group	Number of people at risk	Description	Validation	L	S	Score (LxS)	R	Drought	More intense precipitation	
P1 Toilet and containment—storage/treatment with soak pits and septic tanks	Ingestion after contact with excreta in nonfunctional toilets	All microbial pathogens	U1	30 000	Flush toilets and water supply	Visual and survey	4	2	8	М	+	-	Currently, households do not have a continuous water supply. This worsens in dry conditions, and there also is not enough water to flush toilets.
P2 Disposal of liquid fraction	Ingestion of contaminated groundwater due to infiltration from soak pits and septic tanks into shallow groundwater	Faecal pathogens	LI	20 000	In some cases, safe distance from wells has been considered.	Field visits	5	4	20	Н	+	+	High prevalence of diarrhoea is reported among among young children, especially during the dry season. Likelihood of groundwater use is
by infiltration		Nitrates and nitrates	(children less than 5 years old)	8000	Awareness-raising campaigns among mothers	Interviews with mothers	5	8	40	VH	+	+	expected to increase during drought periods. Severity will increase with more and prolonged flooding due to climate change. Consideration should be given to vulnerable communities that may have a reduced ability to find alternative water sources.

A summary of:

- hazards
- hazardous events
- exposure groups

- exposure routes
- existing control measures
- and their effectiveness

Identify hazards and hazardous events

OBJECTIVE

This step lists circumstances of how the risk occurs during use, operation and maintenance of the sanitation system for the exposure groups.

Hazard

Hazardous Event

Identify hazards and hazardous events

What is a hazard?

A biological, chemical or physical constituent that can cause harm to human health.

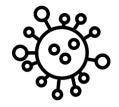
Biological

Microbiological pathogens:

- Bacteria
- Viruses
- Protozoa
- Helminths

Chemical

- Heavy metals
- Compounds found in industrial effluents


Physical

- Sharps (e.g. needles)
- Physical injury from equipment

Identify hazards and hazardous events

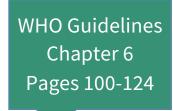
Environmental transmitted pathogens

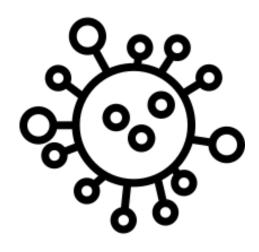
- We are continuously exposed to microorganisms
- Only a small proportion cause infection and disease.

Pathogens: microorganisms that cause disease

Enteric pathogens: Microorganisms transmitted by the fecaloral route and infect the gastrointestinal tract.

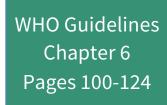
To cause illness, the pathogen must usually first grow within or on the host.

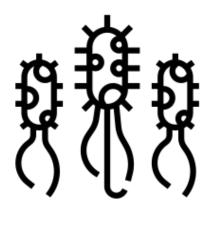

Identify hazards and hazardous events


Organism	Per Gram of Feces
Protozoan parasites	10 ⁶ –10 ⁷
Helminths	
Ascaris	$10^4 - 10^5$
Enteric viruses	
Enteroviruses	$10^3 - 10^7$
Rotavirus	10^{10}
Adenovirus/Norovirus	10^{11}
Enteric bacteria	
Salmonella spp.	$10^4 - 10^{10}$
Shigella	$10^5 - 10^9$
Indicator bacteria	
Coliforms	$10^7 - 10^9$
Fecal coliforms	$10^6 - 10^9$

At any time during infection the pathogen may be released into the environment by the host in faeces, urine or respiratory secretions.

The concentration of organisms released into the environment varies with the type of organism and the route of transmission.





20 – 100 nm

Viruses

- Smallest enteric pathogen.
- Infectious microbe consisting of a segment of nucleic acid (DNA or RNA) surrounded by a protein coat.
- They cannot replicate alone.
- They cannot metabolize in the environment.
- They can be excreted in very high numbers and are transported long distance in water.
- Predominantly cause gastroenteritis (rotovirus and norovirus diarrhoea), hepatitis A&E, viral meningitis.

 $2-3 \mu m$

Bacteria

- They are very small single celled organisms.
- Many are capable of multiplication outside a host under favourable conditions
- Cause gastroenteritis, salmonellosis, typhoid, E. coli diarrhoea
- Cause severe health outcomes and long-term effects.

WHO Guidelines Chapter 6 Pages 100-124

Protozoa

 $3 - 20 \mu m$

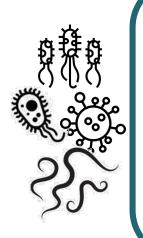
hair

Complex and large single celled organisms.

- They cannot replicate outside the host, but are very persistent in the environment in cyst stage.
- Enteric, cause gastroenteritis, Amoebic dysentery, giardiasis.

WHO Guidelines Chapter 6 Pages 100-124

 $1 - 300 \, \mu m$


Visible

Helminths

- Also known as parasitic worms, include tapeworms, flukes and roundworms.
- They are multi-cellular, complex organisms.
- Soil-based and water based-worms.
- Ingestion of eggs or skin penetration.
- Cause ascariasis, hookworms infections.
- Mild to serious effects: chronic abdominal pain and diarrhoea, anaemia, intestine obstruction, malnutrition.
- Ascaris eggs can survive in the environment for years.

Environmental transmission of pathogens in faecal waste

WHO Guidelines Chapter 6 Pages 114-119

Occurrence

Pathogens must be excreted into the environment in sufficient quantities by infected people

Persistence

Pathogens must survive on surface, water, sewage and soil, and remain infectious

Vector or hosts

Presence and abundance of any required vectors or intermediary hosts

Individual's susceptibility to infections

Immune status, nutritional status, age, preconditions

Infectivity

Specific strain and virulence

How do we detect pathogens in the environment?

Environmental transmission of pathogens in faecal waste

WHO Guidelines Chapter 6 Pages 114-119

How do we detect pathogens in the environment? (Chapter 6.3.1 WHO Guidelines)

bacteria

viruses

protozoa

Indicator of faecal contamination

E. coli as combined indicator

Also enterococci and bacteroides phage

Not perfect indicators!

But

- Useful
- Feasible
- Economical

In some circumstances, it might be important to identify the source and movement of a specific pathogen.

Table 6.1

WHO Guidelines Chapter 6 Pages 105-113

Table 6.1 Excreta-related pathogens (main source: Mandell, Bennett & Dolin, 2000)

Pathog	en		Health signific	ance	Transmissk pathways	NN N	Important animal source	Likely Importan of sanitat for contro	ce ion	Concer excret faeces			ation of retion		iditional ferences				
							BACT	ERIA											
Campylo	obacter sp	p.	Most cor		Predominant	tly	Poultry	Low		106-1	109/g	Upt	o 3 weeks	5					
								VIRUSE	5										
	Adenoviruses						on-to-person, None — strict human		rict	Low			10 ¹¹ /g (lower with		Months after				
	PROTOZOA																		
Clostridi			o. common ca		one of the most ommon causes	mon causes person, and		nd species, C. p		parvum					_		Hunte Thom 2005	pson,	
										HELM	IINTHS								
			Ascaris Iumbricoides (roundworm)		helminth infections of globally. Largely co asymptomatic. so			nsumption	not to be pa	No (animal roundworm species not thought to be pathogenic to human).		High		10 ⁵ eg	eggs/g Whi infe pers		tion	Bethor et al., 2006	y
						Can lead to bowel/ intestine obstruction,		and hand contamination.											

Environmental transmission of pathogens in faecal waste

Helminths

It is important to understand which helminth are endemic in the locality of the SSP.

Examples of helminth infections

Schistosomiasis

Eggs infect snail that lives in standing waters.

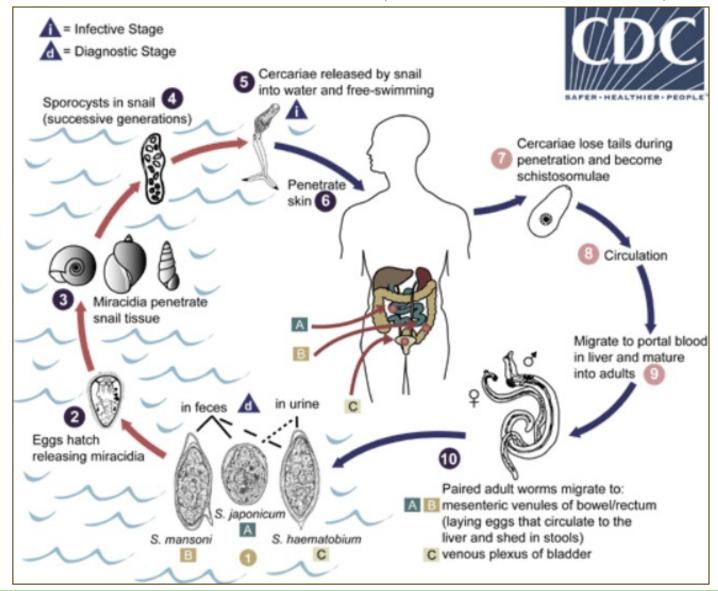
Cercarie will swim and penetrate the skin of humans in the water.

This is because:

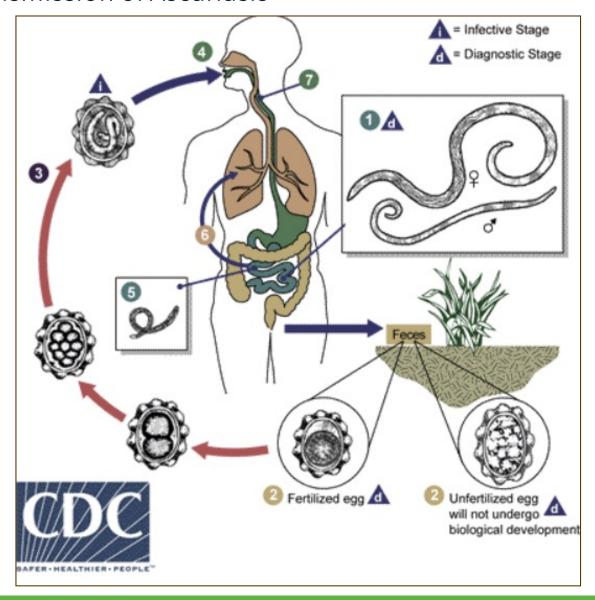
- Helminth infections are context specific.
- Species and concentrations of Helminth eggs in waste influence the control measures.

Ascariasis

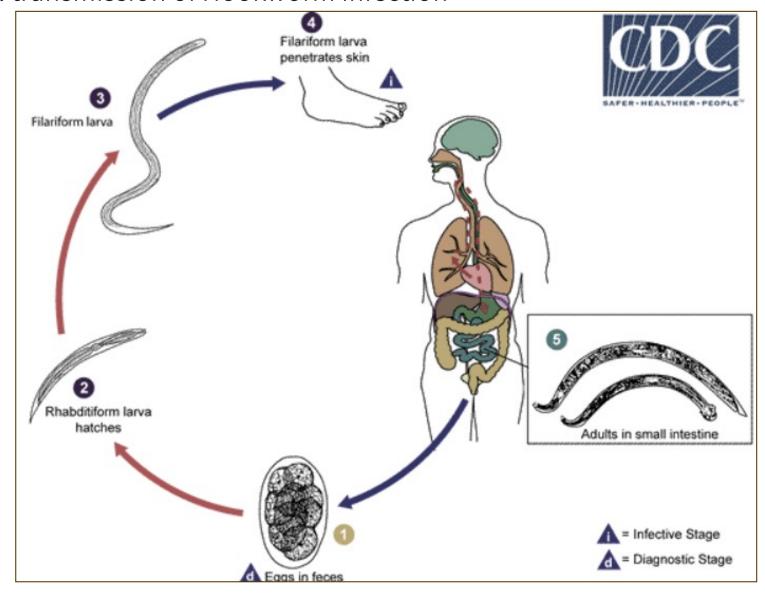
Transmitted by the faecal-oral route.


Contamination of produce grown with contaminated water and faecal sludge.

Hookworm infection


Eggs shed via faeces and the larvae penetrates the skin, usually at the feet.

Transmission route affects risk and required control measures


Helminths: transmission of Schistosomiasis (Bilharzia or Snail Fever)

Helminths: transmission of Ascariasis

Helminths: transmission of Hookworm infection

Environmental transmission of pathogens in fecal waste

WHO Guidelines Chapter 6 Pages 114-119

Occurrence

Pathogens must be excreted into the environment in sufficient quantities by infected people

Infectivity

Specific strain and virulence

Persistence

Pathogens must survive on surface, water, sewage and soil, and remain infectious Vector or hosts

Presence and abundance of any required vectors or intermediary hosts

Individual's susceptibility to infections

Immune status, nutritional status, age, preconditions

Why do we need to consider vectors in SSP?

Environmental transmission of pathogens in faecal waste

WHO Guidelines Chapter 6 Page 104

Excreta facilitated vector breading (Chapter 6.3.1 WHO Guidelines)

- Excreta, water and waste may serve as breeding sites.
- Insects can act as vectors of disease by mechanically transporting pathogens in the environment.

Cockroaches:

Breed in excreta, such as pit latrines.

Carry human pathogens High microbial counts.

Enhance faecal-oral transmission, providing pathways from excreta to food or kitchen utensils.

Flies:

Carry a variety of enteric pathogens, including bacteria and protozoa.

Cause trachoma.

Mosquitos //

Improper drainage, stagnant water and ponds contribute to their breading.

Wide range of mosquitoborne diseases: dengue, malaria, West Nile virus, chikungunya, yellow fever...

Vector-habitat and mode of transmission must be considered in SSP

Identify hazards and hazardous events

What is a hazardous event?

Any incident or situation that:

- introduces or releases the hazard (i.e. faecal pathogens) to the environment in which people are living or working, or
- amplifies the concentration of the hazard in the environment in which people are living or working,
- or fails to remove the hazard from the human environment.

Identify hazards and hazardous events

Hazard, hazardous event, effect, risk, ...!?

Hazard(s)

+

Hazardous event

Health effects

Example: wastewater channel

Biological = pathogens (e.g. bacteria, virus and protozoa) +

Ingestion of pathogens after contact with wastewater while entering into drains during maintenance

e.g. diarrhoea, fever, vomiting

Identify hazards and hazardous events

Hazard

≠

Hazardous Event (HE)

A good hazardous event tells a short story.

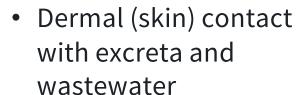
The **villain** is the **hazard** and the hazardous event (the story) says what happens - how the **villain** causes harm.

For example:

Workers are **exposed** to **pathogens** in

raw sewage in open drains

How exposed?


during maintenance activities

Identify hazards and hazardous events

Hazardous events should describe how groups are exposed to hazards. Common exposure routes to consider in SSP:

 Ingestion after contact with wastewater/ excreta

Ingestion of contaminated water

 Vector-borne with flies/mosquitoes/ cockroaches

 Consumption of contaminated produce Inhalation of aerosols and particles

Identify hazards and hazardous events

Hazards and hazardous events must be identified at each step along the sanitation chain

Existing – normal operation

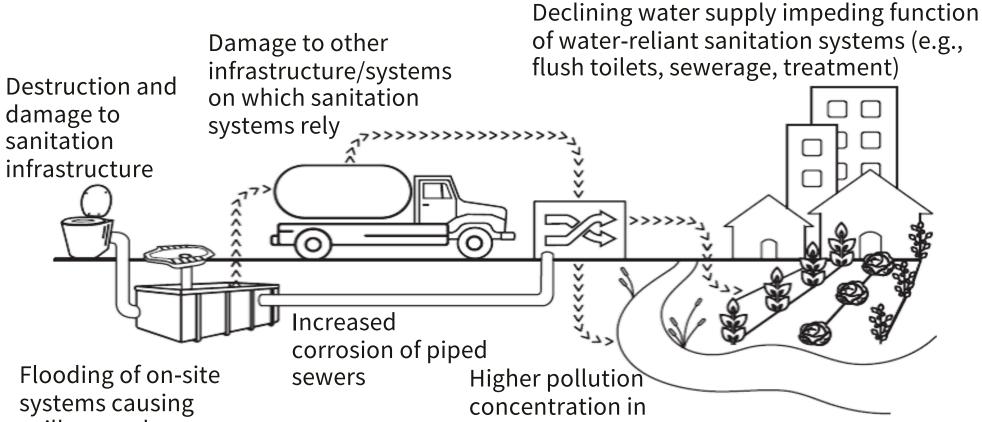
• e.g. faulty equipment, system overloading, lack of maintenance

Potential – system failure or accident

 e.g. treatment failure (full or partial), power failures, equipment breakdown

Seasonal factors

• e.g. seasonal behaviour changes by farm workers, seasonal farm workers


Indirect

- e.g. hazards that relates to people not directly involved such as effects on downstream communities.
- e.g. chemicals in soils.

AND climate related factors Cumulative

Identify hazards and hazardous events

Think about climate-related **effects** that affect the sanitation system:

spillage and contamination

Overflow and/or obstruction of sewerage and septic systems

wastewater and reduced capacity of receiving water bodies to dilute wastewater

Proliferation of algal blooms or microbes carried by vectors in water

Identify hazards and hazardous events

SSP Manual Example 3.2 Page 42 WHO Guidelines Chapter 3 Page 34-38

Containment- Hazardous events:

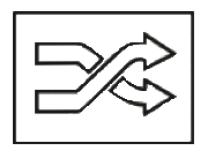
storage/treatment

- Ingestion of groundwater contaminated with leachate percolating from pits or septic tanks.
- **Ingestion** of groundwater contaminated with leakage from cracked/damaged septic tanks.

WHO Guidelines

Table 3.6 – climate change potential impact on septic tanks

Page 55


Climate change related:

 Ingestion of pathogens caused by structural damage to tanks during floods.

SSP Manual Example 3.2 Page 42 WHO Guidelines Chapter 3 Page 44-49

Hazardous events:

Treatment

Existing and potential:

- **Inhalation** of aerosols while manual handling of the dried faecal sludge.
- **Ingestion** of pathogens in incompletely treated effluent, resulting from discharge of fresh faecal sludge in wastewater treatment ponds, causing overload and failure.

WHO Guidelines

Table 3.6 – climate change potential impact on treatment

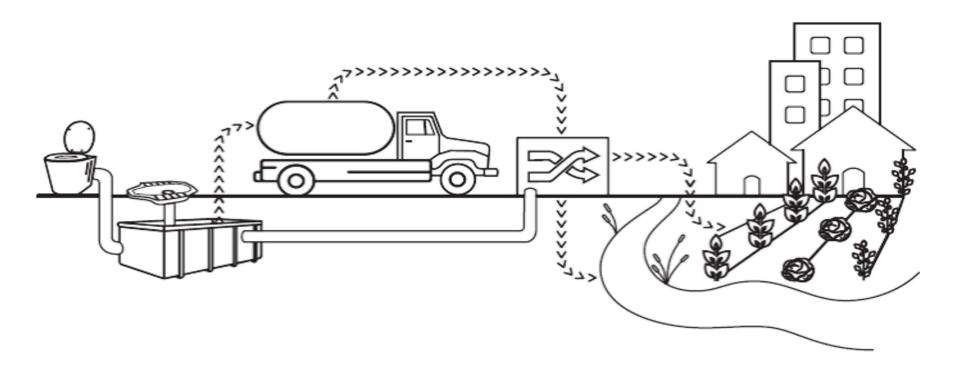
Page 55

Climate change related:

 Ingestion of pathogens contained in untreated sewage during extreme weather events or floods damaging wastewater treatment systems.

Identify and assess existing control measures

OBJECTIVE

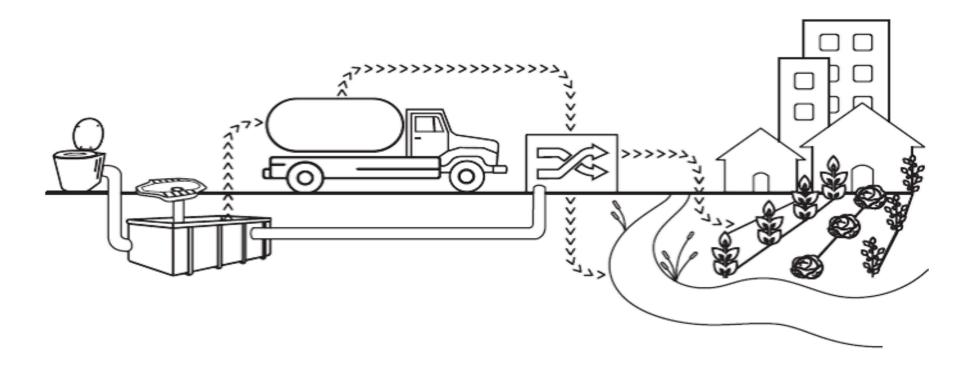

To determine how well the existing system protects those at risk.

What is a control measure?

A control measure is any action or activity (or barrier) that can prevent or eliminate a sanitation-related hazard or reduce it to an acceptable level.

Identify and assess existing control measures

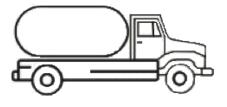
How do we determine how effective is a control measure?



Consider how effective the existing control measure:

- 1. <u>could</u> be, assuming it was always working well (known as CM validation).
 - checking system loading against its design capacity;
 - checking historical performance under unusual conditions;
 - checking the credited reductions of pathogens for control measures.
- 2. <u>is in practice</u>, considering actual site conditions, enforcement of existing rules and regulations and operating practices.

Identify and assess existing control measures


Control measure validation at each step of the sanitation system

Identify and assess existing control measures

Emptying and transport

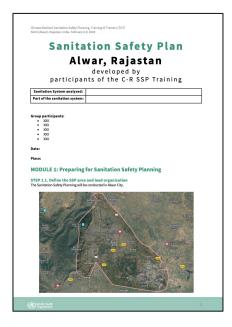
Control measure

- Preventive emptying
- Use of protective personal equipment (PPE)

How effective is it in practice?

- Do HHs really call the emptying trucks before the holding tanks are full?
- Do the sanitation workers really use the PPE?

Worked example: SSP IN NEWTOWN


								RIS	SK ASSE	SSMENT	COMMENTS JUSTIFYING RISK ASSESSMENT (Under current conditions, climate change scenarios, or effectiveness of the control)				
COMPONENT	HAZ	ARD IDENTIFIC	EXISTING CONTROLS			elihood; S : high; M =	ent condi = severity; = medium; y high)	R = risk	climate cha + means i – means d	e most likely inge scenarios ncreased risk, lecreased risk, the same risk)					
Sanitation step	Hazardous event	Hazard	Exposure group	Number of people at risk	Description	Validation	L	S	Score (LxS)	R	Drought	More intense precipitation			
P1 Toilet and containment—storage/treatment with soak pits and septic tanks	Ingestion after contact with excreta in nonfunctional toilets	All microbial pathogens	U1	30 000	Flush toilets and water supply	Visual and survey	4	2	8	M	+	-	Currently, households do not have a continuous water supply. This worsens in dry conditions, and there also is not enough water to flush toilets.		
P2 Disposal of liquid fraction	Ingestion of contaminated groundwater due to infiltration from soak	Faecal pathogens	L1	20 000	In some cases, safe distance from wells has been considered.		5	4	20	Н	+	+	High prevalence of diarrhoea is reported among among young children, especially during the dry season. Likelihood of groundwater use is		
by infiltration	pits and septic tanks into shallow groundwater	Nitrates and nitrates	(children less than 5 years old)	8000	Awareness-raising campaigns among mothers	Interviews with mothers	5	8	40	VH	+	+	expected to increase during drought periods. Severity will increase with more and prolonged flooding due to climate change. Consideration should be given to vulnerable communities that may have a reduced ability to find alternative water sources.		
P1 Toilet and	Ingestion after contact with wastewater from overflowing on-site systems due to damage or blockage	All microbial pathogens	U1	30 000	Septic tanks and soak pits present	Interviews and field visits	4	4	16	Н	-	+	Likelihood and severity will increase with heavy rainfall and flooding.		
containment— storage/ treatment with soak pits and septic tanks			L2	50 000	problems.		3	4	12	M	-	+	The localized problem of septic tank damage becomes a community problem with flooding, affecting others in the vicinity.		
P5 Flush toilets discharging in open drains	Ingestion after contact with excreta in nonfunctional toilets	All microbial pathogens	U2	5000	Flush toilets and water supply	Visual survey	4	2	8	M	+	-	Currently, households do not have a continuous water supply. This worsens in dry conditions, and there is also not enough water to flush toilets.		

GROUP WORK

Applying Steps 3.1 and 3.2 to our Alwar case study

In your Alwar SSP Document, for your assigned sanitation system, identify:

- Hazardous events
- Hazards
- Exposure groups and number of persons in risk
- Existing control measures

Component	1	Existing C	L	con =Lil		rent ns od;	clima sc + means - means	ent ne most likely ate change enarios: increased risk decreased risk the same risk	Comments justifying risk assessment, under current conditions or climate change scenarios, or effectiveness of				
Sanitation step	Hazardous event	Hazard	Exposure Groups	Number of persons at risk	Description of existing control	Validation of control	L	S	Scor	e R			the control